Structure Learning for Optimization
نویسندگان
چکیده
We describe a family of global optimization procedures that automatically decompose optimization problems into smaller loosely coupled problems. The solutions of these are subsequently combined with message passing algorithms. We show empirically that these methods produce better solutions with fewer function evaluations than existing global optimization methods. To develop these methods, we introduce a notion of coupling between variables of optimization. This notion of coupling generalizes the notion of independence between random variables in statistics, sparseness of the Hessian in nonlinear optimization, and the generalized distributive law. Despite its generality, this notion of coupling is easier to verify empirically, making structure estimation easy, while allowing us to migrate well-established inference methods on graphical models to the setting of global optimization.
منابع مشابه
Structure Learning in Bayesian Networks Using Asexual Reproduction Optimization
A new structure learning approach for Bayesian networks (BNs) based on asexual reproduction optimization (ARO) is proposed in this letter. ARO can be essentially considered as an evolutionary based algorithm that mathematically models the budding mechanism of asexual reproduction. In ARO, a parent produces a bud through a reproduction operator; thereafter the parent and its bud compete to survi...
متن کاملOPTIMAL DESIGN OF TRUSS BRIDGES USING TEACHING-LEARNING-BASED OPTIMIZATION ALGORITHM
In this study, teaching-learning-based optimization (TLBO) algorithm is employed for the first time for optimization of real world truss bridges. The objective function considered is the weight of the structure subjected to design constraints including internal stress within bar elements and serviceability (deflection). Two examples demonstrate the effectiveness of TLBO algorithm in optimizatio...
متن کاملLearning-Based Energy Management System for Scheduling of Appliances inside Smart Homes
Improper designs of the demand response programs can lead to numerous problems such as customer dissatisfaction and lower participation in these programs. In this paper, a home energy management system is designed which schedules appliances of smart homes based on the user’s specific behavior to address these issues. Two types of demand response programs are proposed for each house which are sh...
متن کاملBilateral Teleoperation Systems Using Backtracking Search optimization Algorithm Based Iterative Learning Control
This paper deals with the application of Iterative Learning Control (ILC) to further improve the performance of teleoperation systems based on Smith predictor. The goal is to achieve robust stability and optimal transparency for these systems. The proposed control structure make the slave manipulator follow the master in spite of uncertainties in time delay in communication channel and model pa...
متن کاملUsing an Evaluator Fixed Structure Learning Automata in Sampling of Social Networks
Social networks are streaming, diverse and include a wide range of edges so that continuously evolves over time and formed by the activities among users (such as tweets, emails, etc.), where each activity among its users, adds an edge to the network graph. Despite their popularities, the dynamicity and large size of most social networks make it difficult or impossible to study the entire networ...
متن کاملVerification of an Evolutionary-based Wavelet Neural Network Model for Nonlinear Function Approximation
Nonlinear function approximation is one of the most important tasks in system analysis and identification. Several models have been presented to achieve an accurate approximation on nonlinear mathematics functions. However, the majority of the models are specific to certain problems and systems. In this paper, an evolutionary-based wavelet neural network model is proposed for structure definiti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011